A function $f: I \to \mathbb{R}$ is **continuous at** c when

$$\lim_{x \to c} f(x) = f(c)$$

If f is continuous at every $c \in I$, we simply say f is **continuous**.

Problem 1

Show that each of the following statements is false using a counterexample.

- 1. A continuous, surjective function $f : \mathbb{R} \to \mathbb{R}$ is injective.
- 2. A continuous, injective function $f : \mathbb{R} \to \mathbb{R}$ is surjective.
- 3. A bijective function $f : \mathbb{R} \to \mathbb{R}$ is continuous.
- 4. If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are such that $f \circ g$ is continuous, then f is continuous.
- 5. If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are such that $f \circ g$ is continuous, then g is continuous.
- 6. If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are such that $f \circ g$ is continuous, then either f or g is continuous.

Problem 2

Show that if $f : \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$ and f(a) > 0, there exists $\delta > 0$ such that f(x) > 0 for all $x \in (a - \delta, a + \delta)$.

Problem 3

Show that if $f, g: \mathbb{R} \to \mathbb{R}$ are continuous, and we have for some $a \in \mathbb{R}$, f(a) > 0. Furthermore suppose (fg)(x) = 0 for all $x \in \mathbb{R}$. Show there exists some $\delta > 0$ such that for all $x \in (a - \delta, a + \delta)$, g(x) = 0. *Hint: Use the previous problem.*

Problem 4

Show that if $f : \mathbb{R} \to \mathbb{R}$, then f is continuous if and only if for any open interval (a, b), for all $x \in f^{-1}((a, b))$ there exists a $\delta > 0$ such that $(x - \delta, x + \delta) \subseteq f^{-1}((a, b))$.

Problem 5

Exhibit a function $f: I \to \mathbb{R}$ which is:

- 1. Everywhere discontinuous.
- 2. Continuous only at 0.
- 3. Continuous only at integers.
- 4. Continuous only at irrational numbers.